ARTICLE

Synthesis of 6*H*-pyrrolo[3',4':2,3][1,4]diazepino[6,7,1-*hi*]indole-8,10(7*H*,9*H*)-diones using 3-bromo-4-(indol-1-yl)maleimide scaffold

Sergey A. Lakatosh, Yuri N. Luzikov and Maria N. Preobrazhenskaya*

Gause Institute of New Antibiotics, Russian Academy of Medical Sciences, B. Pirogovskaya 11, Moscow 119021, Russia. E-mail: lcta@space.ru; Fax: 7 095 245 02 95; Tel: 7 095 245 37 53

Received 14th November 2002, Accepted 9th January 2003 First published as an Advance Article on the web 7th February 2003 UBC www.rsc.org/obc

Series of 3-arylalkyl- or 3-alkylamino-4-(indol-1-yl)maleimides and bis(indol-1-yl)maleimides were synthesised. The cyclization of the 3-substituted 4-(indol-1-yl)maleimides under the action of acids resulted in the formation of diazepine[1,4] derivatives with indoline and maleimide nuclei annelated. These compounds readily produced the corresponding indolomaleimidodiazepines[1,4] after dehydrogenation.

Introduction

Interest in bis(indol-3-yl)maleimides and related compounds comes from their valuable biological properties, especially high cytotoxicity and inhibitory activity towards protein kinase C, the key enzyme that transduces a variety of extracellular signals from cell periphery to gene transcription mechanisms.¹ 3-[(3-Dimethylaminopropyl)indol-3-yl]-4-(indol-3-yl)maleimide (1), which is a potent inhibitor of protein kinase C represents one of the most investigated compounds of this type.¹ Bis(indol-3-yl)maleimides are closely related to the derivatives of maleimidoindolo[2,3-*a*]carbazole. Antibiotic rebeccamycin (2) and some other compounds of this type (*e.g.* 3) are of great biological importance due to their inhibitory activities towards topoisomerase I and protein kinase C.²

Maleimidoindolo[2,3-*a*]carbazoles (8) have been obtained from the corresponding bis(indol-3-yl)maleimides (4) *via* bis-(indol-3-yl)succinimides (5) by cyclization in acidic media with subsequent oxidation.³ 2,2'-Cyclization of bis(indol-3yl)maleimide (4) under the action of acids was successful in the presence of an oxidant (*e.g.* DDQ) (Scheme 1).⁴ Bis(indol-3-yl)- maleimides under the action of TFA formed aminophenylcarbazoles 7 accompanied by the opening of one of the indole rings.⁵

Although many derivatives of this type have been studied, their bis(indol-1-yl)analogues remain to be investigated. The goal of this work was the synthesis of bis(indol-1-yl)maleimides and 3-arylalkyl- or 3-dialkylamino-4-(indol-1-yl)maleimides and the study of the possibility to obtain from them polycondensed heterocyclic compounds.

Results and discussion

The initial step of this work was the synthesis of bis(indol-1-yl)maleimides and 3-(indol-1-yl)maleimides substituted at position 4 with arylalkyl-, dialkyl- or alkylamino- moieties. The interaction of 3.4-dibromomaleimides (9a-c) with indoline in DMF in the presence of Et₃N afforded the corresponding 3bromo-4-[2,3-dihydroindol-1-yl]maleimides (10a-c) in 75-80% yields. Only monosubstituted products were obtained; the second bromine atom could not be substituted by various amines or the indole Grignard reagent. The surprisingly low reactivity of the second bromine atom in compounds 10a-c can be explained by masking the electron withdrawing effect of the carbonyl groups by the neighbouring indoline introduced into the maleimide ring. However after the dehydrogenation of the indoline moiety the bromine atom in 3-bromo-4-(indol-1-yl)maleimides (11a-c) was substituted successfully with indoline or various amines (N-ethylaniline, diethylamine, benzylamine) to give compounds 12a-e in 70-80% yields (Scheme 2). 3-(Indol-1-yl)-4-[2,3-dihydroindol-1-yl]maleimides 12a and b were dehydrogenated with the use of DDQ in boiling toluene to give the corresponding bis(indol-1-yl)maleimides (13a,b) (Scheme 3).

In an attempt to effect the 2,2'-ring closure **13a,b** were treated with an excess of TFA in CH₂Cl₂ at rt or in toluene at 90 °C until the full conversion of the starting material was observed by TLC (~2 h). The ¹H-NMR spectra of the isolated products (**14a** and **b**) displayed the signals of the indole nucleus substituted at positions 1 and 7 (4 and 9a on Scheme 3) and the indoline nucleus substituted at positions 1 and 2 (15 and 9b on Scheme 3). The significant downfield shift of the C5-H hydrogen signal can be explained by the influence of the neighbouring carbonyl group at C3. In ¹³C-NMR spectra the signals corresponding to indoline C9b and C10 carbons were identified in the high field area. According to the APT-experiments the C9b atom is bonded with one hydrogen atom, and C10 with two hydrogens. Based on these data we assigned the structures of

Scheme 3

9b,10-dihydro-2-benzyl-1H-indolo[1',7':4,5,6]pyrrolo[3',4':2,3]-[1,4]diazepino[1,7-a]indole-1,3(2H)-dione (14a) and the corresponding N²H- derivative (14b) to the compounds formed from bisindolylmaleimides 13a and b respectively through the 2-7' cyclization (Scheme 3). Compounds 14a,b were dehydro-

We suggest that in acidic media bisindolylmaleimide 13 is protonated at position 3 of one of the indole nuclei. The intermediate 18 then undergoes the intramolecular electrophilic attack of the iminium ion on the position 7 of the nonprotonated indole nucleus to give 14 (Scheme 5).

NН

Η

1-Benzyl-3-(2,3-dihydroindol-1-yl)-4-(carbazol-9-yl)maleimide (12f) was obtained from 1-benzyl-3-(1,2,3,4,4a,9a-hexahydrocarbazol-9-yl)-4-bromomaleimide (10d) via 1-benzyl-3-(carbazol-9-yl)-4-bromomaleimide (11d). Dehydrogenation of 12f afforded 1-benzyl-3-(indol-1-yl)-4-(carbazol-9-yl)maleimide (13c). The treatment of the latter with CH_3SO_3H in boiling toluene for 1 h led to the cyclization product 14c in 30% yield. The indoline moiety of the latter was dehydrogenated to 15c (Scheme 6). The poor yield and the necessity of relatively harsh cyclization conditions can be due to the steric hindrance.

3-(Indol-1-yl)-4-(2,3-dihydroindol-1-yl)maleimide (12a)treated with TFA in CH₂Cl₂ gave maleimido[1,4]diazepine with two indoline nuclei annelated (19) in 55% yield. The TLC analysis of the reaction mixture showed the presence of a minor product of the reaction that was identified as 20. Compound 20, isomeric to 14a, was formed presumably by the partial aromatization of diindolinodiazepine 19. Attempts to separate the products 19 and 20 by column chromatography (CHCl₂) led to the full conversion of 19 to 20 (isolated in 45% yield from 12a), although compound 19 was successfully isolated by the crystallisation from n-heptane. The ¹H-NMR spectrum of the product 19 exhibited signals characteristic of 1,7- and 1,2disubstituted indolines, whereas signals corresponding to 1,7disubstituted indoline and 1,2-disubstituted indole were present in the spectrum of 20. Compounds 19 and 20 were smoothly converted into bisindolodiazepine 15a identical with the compound obtained from 14a by treatment with DDQ (two or one equivalent respectively) (Scheme 7).

When treated with TFA in CH₂Cl₂ at rt or in toluene at 90 °C the N-substituted 3-amino-4-(indol-1-yl)maleimides 12c-e produced the corresponding 1,2-dihydro-6H-pyrrolo[3',4':2,3]-[1,4]diazepino[6,7,1-hi]indole-8,10(7H,9H)-diones 21a-c in good yields (Scheme 8). Indolinodiazepines 21a,b, were converted into the corresponding indolodiazepines 22a,b by treatment with DDQ in boiling toluene. The ¹H-NMR spectra of compounds 21a,b exhibit signals characteristic of a 1,7-disubstituted indoline ring and a single hydrogen quartet in the area 4-4.5 ppm (C6-H) coupled with three hydrogen doublet at 1.3-1.5 ppm (C6–CH₃), which is indicative of the diazepine[1,4] structure of the products. The spectra of dehydrogenated compounds 22a,b exhibit signals of the 1,7-disubstituted indole. Contrary to the compounds 21a,b, compound 21c gave, upon the treatment with DDQ, two products according to TLC. During an attempt to separate them by column chromatography (toluene-acetone) only indolinodiazepine 23 was isolated.

The structure of compounds **21a–c** suggests the intramolecular electrophilic attack of iminium ion **25** formed by a proton shift from the protonated indolomaleimide **24** to position 7 of the indoline nucleus as a cyclization step (Scheme 9).

In conclusion a convenient method for the synthesis of 3-arylalkyl- or 3-alkylamino-4-indolo-maleimides or bis(indol-1-yl)maleimides is developed. These compounds undergo cyclization under the action of acids to form diazepines[1,4] with a common structural motif of 1,2-dihydropyrrolo[3',4':2,3]-[1,4]diazepino[6,7,1-hi]indole-8,10(7H,9H)-dione.

Experimental

Mps were determined on a Buchi SMP-20 apparatus and are uncorrected. NMR spectra were recorded with Varian

VXR-400 instrument at 400 MHz (1H-NMR) or at 75 MHz (¹³C-NMR) with internal reference. Chemical shifts are given in ppm and coupling constants in Hz. Assignment of the signals was based on the decoupling experiments for ¹H-NMR and APT-experiments for ¹³C-NMR spectra, signals corresponding to the quaternary carbon atoms are marked (q). Electron impact mass-spectra (EI-MS) were obtained on an SAQ 710 Finnigan instrument at 70 eV (direct introduction, ion source temperature 150 °C). HRMS mass spectra were registered on a MAT 8430 Finnigan instrument with data operating system SS-300 (EI, 70 eV, direct introduction, ion source temperature 250 °C). Analytical TLC was performed on Kieselgel F254 plates (Merck) and column chromatography on Silica Gel Merck 60. Elemental analyses were performed in Organic Analysis Laboratory of Nesmeyanov Institute of Elementoorganic Compounds, Moscow, Russia. Extracts were dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. Solvents and reagents were obtained from commercial suppliers. 3,4-Dibromomaleimide⁷, 1-methyl- and 1benzyl-3,4-dibromomaleimide⁸ were obtained as previously described.

1-Benzyl-3-bromo-4-(2,3-dihydro-1*H*-indol-1-yl)-1*H*-pyrrole-2,5-dione (10a)

To a stirred solution of 1-benzyl-3,4-dibromomaleimide 9a (3.4 g, 10 mmol) in DMF (5 mL) were added dropwise indoline (1.8 mL, 15 mmol) and then Et₃N (2.5 mL) and the mixture was stirred at rt overnight and then poured into 1 N HCl (50 mL). The water phase was extracted with EtOAc (2×50 mL), extracts were washed with 1 N HCl (3×30 mL), aq. NaHCO₃ $(2 \times 20 \text{ mL})$, water and brine, dried and evaporated. The residue was crystallised from EtOH to give 10a as dark red crystals (4 g, 10.5 mmol, 70%); mp 114–116 °C (EtOH); R_f 0.56 (n-heptane– EtOAc 6:1); (Found C. 59.50; H. 3.99; N 7.38. C₁₉H₁₅BrN₂O₂ requires C. 59.55; H. 3.95; N 7.31%); $\delta_{\rm H}$ (d₆-DMSO) 3.12 (2H, t, J 7.95), 4.32 (2H, t, J 7.95), 4.66 (2H, s, CH₂Ph), 6.99 (1H, t, J 7.47), 7.01 (1H, d, J 7.7), 7.16 (1H, t, J 7.47), 7.26 (1H, t, J 7.7), 7.29–7.36 (5H, m, -CH₂C₆H₆); $\delta_{\rm C}$ (d₆-DMSO) 28.9, 41.4, 54.0, 89.1 (q), 116.2, 123.1, 124.8, 126.1, 127.4, 127.5, 128.5, 132.9 (q), 136.6 (q), 141.8 (q), 141.9 (q), 165.4 (q), 166.2 (q); *m*/*z* (EI MS) M⁺ 382 (100%).

1-Methyl-3-bromo-4-(2,3-dihydro-1*H*-indol-1-yl)-1*H*-pyrrole-2,5-dione (10b)

Obtained similarly from 1-methyl-3,4-dibromomaleimide **9b** as a yellow solid in 78% yield, mp 139–141 °C (decomp.) (EtOH); $R_{\rm f}$ 0.27 n-heptane–EtOAc, 5:1; (Found C. 50.87; H. 3.68; N 9.19. $C_{13}H_{11}BrN_2O_2$ requires C. 50.84; H. 3.61; N 9.12%); $\delta_{\rm H}$ (CDCl₃) 3.08 (3H, s, N-CH₃), 3.18 (2H, t, *J* 8.02, indoline CH₂), 4.38 (2H, t, *J* 8.04, indoline CH₂), 6.98 (1H, d, *J* 8.06), 7.01 (1H, t, *J* 7.46), 7.19 (1H, t, *J* 7.87), 7.23 (1H, d, *J* 7.33); $\delta_{\rm C}$ (CDCl₃) 24.5, 29.5, 54.2, 89.8 (q), 116.1, 123.4, 124.8, 126.5, 132.5 (q), 141.4 (q), 142.0 (q), 166.2 (q), 166.7 (q); *m/z* (EI MS) M⁺ 306 (100%).

3-Bromo-4-(2,3-dihydro-1*H*-indol-1-yl)-1*H*-pyrrole-2,5-dione (10c)

Obtained similarly from 3,4-dibromomaleimide **9c** as dark red crystals in 60% yield, mp 125–127 °C (decomp.) (n-heptane–EtOAc), R_f 0.49 (n-heptane–EtOAc 5:2), δ_H (d₆-acetone) 3.20 (2H, t, *J* 7.95, indoline CH_2), 4.40 (2H, t, *J* 8.02, indoline CH_2), 7.00 (1H, t, *J* 7.36), 7.03 (1H, d, *J* 8.01), 7.18 (1H, t, *J* 7.55), 7.27 (1H, d, *J* 7.36), 9.83 (1H, s, NH); δ_C (d₆-acetone) 29.9, 54.8, 92.1 (q), 116.8, 123.7, 125.6, 127.0, 133.7 (q), 143.1 (q), 143.3 (q), 167.1 (q), 167.2 (q); *m/z* (EI MS) M⁺ 294 (90), 292 (100); M⁺ – Br 213 (35); M⁺ – Br – CO 185 (20); M⁺ – Br – CONH 170 (50); M⁺ – Br – (CO)₂NH 142 (30%).

1-Benzyl-3-(1,2,3,4,4a,9a-hexahydro-9*H*-carbazol-9-yl)-4bromo-1*H*-pyrrole-2,5-dione (10d)

Obtained similarly to **10a** (1,2,3,4,4a,9a-hexahydrocarbazole⁹ used instead of indoline) in 80% yield as orange crystals, mp 115–117 °C (n-heptane–EtOAc); $R_{\rm f}$ 0.53 n-heptane–EtOAc 6:1; $\delta_{\rm H}$ (CDCl₃) 1.18–1.28 (4H, m), 1.48–1.56 (2H, m), 1.75–1.83 (1H, m), 2.21 (1H, m), 2.36 (1H, m), 3.50 (1H, m), 4.71 (2H, s, CH₂Ph), 6.97 (1H, d, *J* 8.59), 7.07 (1H, t, *J* 7.36), 7.17 (1H, d, *J* 7.56), 7.18 (1H, t, *J* 8.42), 7.27–7.29 (1H, m, phenyl, H4), 7.31–7.34 (2H, 2 t, phenyl-H3 and -H5), 7.39–7.42 (2H, 2 d, phenyl, H2 and H6); $\delta_{\rm C}$ (CDCl₃) 20.5, 22.3, 24.6, 27.2, 41.7, 42.0, 67.3, 87.2, 118.8, 122.8, 124.0, 125.8, 127.7, 128.6, 136.0, 136.2, 140.8, 141.1, 165.7, 166.5; *m/z* (EI MS) M⁺ 436 (100%).

1-Benzyl-3-bromo-4-(1*H*-indol-1-yl)-1*H*-pyrrole-2,5-dione (11a)

To a solution of **10a** (380 mg, 1 mmol) in toluene (50 mL) was added DDQ (340 mg, 1.5 mmol). The mixture was refluxed for 6 h, diluted to 100 mL with EtOAc, washed with aq. NaHSO₃ (2 × 30 mL), Na₂CO₃ solution (3 × 30 ml) water, brine, dried and evaporated. The residue was purified by flash chromatography (n-heptane \rightarrow n-heptane–EtOAc, 6:1) to give **11a** as a yellow solid (360 mg, 0.95 mmol, 95%), mp 122–123 °C (*n*-heptane–acetone), $R_{\rm f}$ 0.41 (*n*-heptane–EtOAc, 7:1); $\delta_{\rm H}$ (d₆-acetone) 4.85 (2H, s, CH₂Ph), 6.86 (1H, dd, J_{32} 3.49, J_{34} 0.89, H3), 7.25 (1H, t, *J* 7.71) 7.30 (1H, t, *J* 8.28) 7.33–7.39 (3H, m), 7.45 (2H, d, *J* 8.4), 7.53, 1H, dd, J_{45} 8.12, J_{43} 0.9, H4), 7.61 (1H, d, J_{23} 3.48, H2), 7.68 (1H, d, J_{76} 7.51, H7) $\delta_{\rm C}$ (d₆-acetone) 43.0, 107.9, 112.0 (q), 114.8, 121.9, 122.9, 123.6, 128.5, 128.7, 128.8, 129.4, 130.5 (q), 135.6 (q), 137.2 (q), 139.8 (q), 165.6 (q), 166.3 (q); *m*/z (EI MS) M⁺ 380 (100%).

1-Methyl-3-bromo-4-(1*H*-indol-1-yl)-1*H*-pyrrole-2,5-dione (11b)

Obtained from **10b** similarly to **11a** as a yellow solid, mp 121– 123 °C (n-heptane–EtOAc); $R_{\rm f}$ 0.3 (n-heptane–EtOAc, 5:1); $\delta_{\rm H}$ (d₆-DMSO) 3.07 (3H, s, N-CH₃), 6.85 (1H, d, J 3.48, H3), 7.22 (1H, t, J 7.71), 7.28 (1H, t, J 7.55), 7.47 (1H, d, J 8.01), 7.53 (1H, d, J 3.47, H2), 7.66 (1H, t, J 7.93); $\delta_{\rm C}$ (d₆-DMSO) 24.6, 106.6, 111.9 (q), 113.7, 120.9, 121.7, 122.6, 128.0, 128.9 (q), 134.1 (q), 138.5 (q), 165.1 (q), 165.6 (q); *m/z* (EI MS) M⁺ 304 (100%).

3-Bromo-4-(1*H*-indol-1-yl)-1*H*-pyrrole-2,5-dione (11c)

Obtained from **10c** similarly to **11a** in 85% yield as a yellow solid, mp 197–199 °C (n-heptane–EtOAc); R_f 0.39 (n-heptane–EtOAc 3:1); δ_H (d₆-DMSO) 6.83 (1H, d, J 3.48, H3), 7.21 (1H, t, J 7.16, H5 or H6), 7.27 (1H, t, J 7.23, H5 or H6), 7.46 (1H, d, J 7.88, H4), 7.55 (1H, d, J 3.49, H2), 7.66 (1H, d, J 7.76, H7) 11.66 (1H, s, N-*H*); δ_C (d₆-DMSO) 106.4, 112.9 (q), 113.8, 121.0, 121.8, 122.6, 128.2, 129.0 (q), 134.3 (q), 138.8 (q), 165.8 (q), 166.7 (q); *m/z* (EI MS) M⁺ 290 (100%).

1-Benzyl-3-bromo-4-(9*H*-carbazol-9-yl)-1*H*-pyrrole-2,5-dione (11d)

Obtained similarly to **11a** (3.6 eq. of DDQ were used) in 90% yield as a yellow solid, mp 175–177 °C (n-heptane–EtOAc), $R_{\rm f}$ 0.36 (n-heptane–EtOAc, 7:1); $\delta_{\rm H}$ (d₆-DMSO) 4.8 (2H, s, CH_2 Ph), 7.32 (1H, t, *J* 7.68, phenyl H4), 7.37 (2H, t, *J* 7.64, carbazole H2 and H7), 7.39 (2H, d, *J* 7.51, phenyl H2 and H6), 7.43 (2H, t, *J* 7.54, phenyl H3 and H5), 7.49 (2H, t, *J* 7.61, carbazole H3 and H6), 7.57 (2H, d, *J* 8.24, carbazole H4 and H5), 8.23 (2H, d, *J* 7.69, carbazole H1 and H8); $\delta_{\rm C}$ (d₆-DMSO) 42.1, 112.9, 120.4 (q), 120.5, 121.7, 123.9 (q), 126.3, 127.5, 128.6, 136.2 (q), 137.7 (q), 138.1, 164.7 (q), 165.6 (q); *m/z* (EI MS) M⁺ 430 (100%).

1-Benzyl-3-(indol-1-yl)-4-(2,3-dihydroindol-1-yl)-1*H*-pyrrole-2,5-dione (12a)

To the stirred solution of 11a (1.14 g, 3 mmol) in DMF (10 ml) were added indoline (550 mg, 4.5 mmol) and TEA (0.6 ml). The reaction mixture was stirred at 90 °C while monitoring by TLC. Upon the full conversion of **11a** the solution was poured into 1 N HCl (50 mL). The resulting mixture was extracted with EtOAc (2 \times 50 mL), extracts were washed with 1 N HCl (2 \times 30 mL), aq. NaHCO₃ (2 \times 20 mL), water and brine, dried and evaporated. Residue was crystallised from n-heptane-EtOAc to give 12a (870 mg, 2.1 mmol, 69%) as yellow crystals, mp 133-135 °C (n-heptane–EtOAc); R_f 0.27 (n-heptane–EtOAc, 7:1); (Found C. 77.36; H. 5.01; N. 10.06. C₂₇H₂₁N₃O₂ requires C. 77.31; H. 5.05; N. 10.02%); $\delta_{\rm H}$ (d₆-acetone) signals assigned to indoline nucleus: 3.18 (2H, t, J 8.06), 4.40 (2H, t, J 8.05), 6.09 (1H, d, J 8.06, H4), 6.49 (1H, t, J 7.00, H5), 6.66 (1H, t, J 7.42, H6), 7.05 (1H, d, J7.36, H7), signals assigned to indole nucleus: 6.62 (1H, d, J 3.35, H3), 6.95 (1H, t, J 7.10, H6), 7.00 (1H, t, J 7.00, H5), 7.20 (1H, d, J 7.69, H4), 7.39 (1H, d, J 3.32, H2), 7.46 (1H, d, J 7.01, H7); benzyl: 4.78 (2H, s, CH₂Ph), 7.31 (1H, t, J 7.14, Ph, H4), 7.38 (2H, t, J 7.55, Ph, H3 and H5), 7.45 (2H, d, J 7.51, Ph, H2 and H6); $\delta_{\rm C}$ (d₆-acetone) 29.9 (-CH₂CH₂N-), 42.0 (-CH₂CH₂N-), 53.8 (CH₂Ph), 105.2, 109.1 (q), 111.9, 113.1, 121.2, 121.3, 122.9, 123.5, 125.1, 127.0, 128.3, 128.9, 129.0 (q), 129.3, 129.4, 133.1 (q), 133.4 (q), 138.0 (q), 138.1 (q), 143.7 (q), 167.2 (q), 168.1 (q); *m*/*z* (EI MS) M⁺ 419 (100%);

3-(Indol-1-yl)-4-(2,3-dihydroindol-1-yl)-1*H*-pyrrole-2,5-dione (12b)

Obtained from **11c** similarly to **12a** in 67% yield as a red solid, mp 174–176 °C (EtOH) (d); $R_{\rm f}$ 0.1 (n-heptane–EtOAc, 6:1); (Found C. 72.99; H. 4.66; N. 12.69. C₂₀H₁₅N₃O₂ requires 72.94; H. 4.59; N. 12.76%); $\delta_{\rm H}$ (d₆-DMSO) 3.04 (2H, t, *J* 8.05, indoline -CH₂-), 4.20 (2H, t, *J* 8.05, indoline -CH₂-), 6.05 (1H, d, *J* 8.06), 6.46 (1H, d, *J* 7.57), 6.58 (1H, d, *J* 3.24, indole C3–*H*), 6.61 (1H, t, *J* 7.32), 6.93 (1H, t, *J* 7.57), 6.98 (1H, t, *J* 7.81), 7.01 (1H, d, *J* 7.21), 7.16 (1H, d, *J* 7.81), 7.37 (1H, d, *J* 3.41, indole C2-*H*), 7.45 (1H, d, *J* 7.57), $\delta_{\rm C}$ (d₆-DMSO) 28.8, 52.4, 103.9, 108.6 (q), 110.9, 111.8, 120.1, 120.2, 121.9, 122.2, 124.2, 125.9, 127.4 (q), 128.7, 131.8 (q), 132.9 (q), 136.5 (q), 142.5 (q), 167.3 (q), 168.4 (q); *m*/*z* (EI MS) M⁺ 329 (100%).

1-Benzyl-3-(*N*-ethylanilino)-4-(indol-1-yl)-1*H*-pyrrole-2,5-dione (12c)

Obtained from **11a** and *N*-ethylaniline similarly to **12a** in 85% yield as yellow crystals, mp 112–114 °C (n-heptane–EtOAc); (Found C. 76.95; H. 5.50; N. 9.98. $C_{27}H_{23}N_3O_2$ requires C. 76.94; H. 5.50; N. 9.97%); R_f 0.42 (n-heptane-EtOAc 6:1); δ_H (CDCl₃) 1.16 (3H, t, *J* 7.1, NCH₂CH₃), 4.00 (2H, q, *J* 7.09, NCH₂CH₃), 4.75 (2H, s, CH₂Ph), 6.33 (1H, d, *J* 3.29, indole H3), 6.76–6.79 (2H, m), 6.80–6.85 (4H, m) includes 6.81 (1H, d, *J* 3.34, assigned to indole H2), 7.00 (1H, t, *J* 6.86), 7.01 (1H, d, *J* 7.65), 7.10 (1H, t, *J* 6.86), 7.32–7.39 (4H, m), 7.45 (2H, d, *J* 6.92); δ_C (CDCl₃) 14.1, 41.5, 47.3, 104.0, 104.1, 106.4 (q), 110.7, 120.1, 120.5, 121.9, 122.9, 125.4, 127.7, 127.9, 128.2 (q), 128.6, 128.7, 136.3 (q), 136.4 (q), 137.2 (q), 141.2 (q), 165.8 (q), 167.2 (q); *m/z* (EI MS) M⁺ 421 (100%).

1-Methyl-3-(*N*-diethylamino)-4-(1*H*-indol-1-yl)-1*H*-pyrrole-2,5-dione (12d)

Obtained from **11b** and diethylamine similarly to **12a** in 90% yield as yellow crystals, mp 88–90 °C (EtOH); R_f 0.19 (n-hept-ane–EtOAc 6:1); (Found C. 68.67; H. 6.44; N. 14.19. C₁₇H₁₉N₃O₂ requires C. 68.67; H. 6.44; N. 14.13%); δ_H (d₆-acetone) 1.02 (6H, t, *J* 7.08, N-CH₂CH₃), 2.05 (4H, m, N-CH₂CH₃), 2.99 (3H, s, N-CH₃), 6.60 (1H, d, *J* 3.23, H3), 7.08 (1H, t, *J* 6.92), 7.12 (1H, t, *J* 7.03), 7.24 (1H, d, *J* 3.22, H2), 7.27 (1H, d, *J* 7.21), 7.59 (1H, d, *J* 7.81); δ_C (d₆-acetone) 5.25, 14.7, 37.0,

94.8, 102.5, 111.9, 112.6, 113.9, 120.2 (q), 122.6, 122.7 (q), 130.9 (q), 133.7 (q), 157.6 (q), 159.9 (q); *m*/*z* (EI MS) M⁺ 297 (100%).

1-Methyl-3-(benzylamino)-4-(indol-1-yl)-1*H*-pyrrole-2,5-dione (12e)

Obtained from **11b** and benzylamine similarly to **12a** in 87% yield as yellow crystals, mp 124–125 °C (EtOH); (Found C. 72.52; H. 5.16; N. 12.63. $C_{20}H_{17}N_3O_2$ requires C. 72.49; H. 5.17; N. 12.68%); R_f 0.24 (n-heptane–EtOAc, 3:1); δ_H (d₆-acetone) 2.98 (3H, s, -CH₃), 4.15 (2H, br d, -NHCH₂Ph), 6.56 (1H, dd, J_{32} 3.23, J_{34} 0.87, indole H3), 6.83–6.87 (2H, m), 7.06–7.16 (6H, m), 7.24 (1H, d, J 8.05), 7.44 (1H, br, NH), 7.59 (1H, d, J 7.51); δ_C (d₆-acetone) 14.8, 38.1, 94.8, 102.5, 111.9, 112.4, 113.9, 118.9, 119.1, 120.0, 120.1 (q), 122.4, 129.4 (q), 130.9 (q), 133.5 (q), 157.7 (q), 160.9 (q); m/z (EI) M⁺ 331 (100%).

1-Benzyl-3-(2,3-dihydro-1*H*-indol-1-yl)-4-(9*H*-carbazol-9-yl)-1*H*-pyrrole-2,5-dione (12f)

Obtained from **11d** and indoline similarly to **12a** in 77% yield as an orange solid, mp 177–179 °C (n-heptane–EtOAc); R_f 0.24 (n-heptane–EtOAc 7:1); (Found C. 79.33; H. 4.97; N. 8.97. C₃₁H₂₃N₃O₂ requires C. 79.30; H. 4.94; N. 8.95%); $\delta_{\rm H}$ (d₆-DMSO) indoline: 3.02 (2H, t, *J* 7.82), 4.23 (2H, t, *J* 7.82), 6.09 (1H, d, *J* 7.77, H4), 6.25 (1H, t, *J* 7.77, H5), 6.57 (1H, t, *J* 7.36, H6), 6.97 (1H, d, *J* 7.34, H7), carbazole: 7.19 (2H, t, *J* 7.54, H2 and H7), 7.36 (2H, d, *J* 7.66, H4 and H5), 7.45 (2H, t, *J* 7.65, H3 and H6), 8.06 (2H, d, *J* 7.61, H1 and H8), benzyl: 4.78 (2H, s, *CH*₂Ph), 7.32 (1H, t, *J* 6.95, Ph, H4), 7.37–7.44 (4H, m); $\delta_{\rm c}$ (d₆-DMSO) 28.0, 41.0, 53.1, 104.2, 110.9, 113.1, 120.2, 120.4, 122.8 (q), 123.0, 124.4, 125.7, 126.1, 127.4, 127.5, 128.6, 132.6 (q), 136.4 (q), 137.0 (q), 140.0 (q), 141.9 (q), 165.8 (q), 167.2 (q); *m/z* (EI) M⁺ 469 (100%).

1-Benzyl-3,4-bis(1H-indol-1-yl)-1H-pyrrole-2,5-dione (13a)

Obtained by the dehydrogenation of **12a** in the conditions described for **11a** in 91% yield as a red solid, $R_f 0.51$ (n-heptane–EtOAc 5:1); m/z (EI HRMS) M⁺ 417,1484 (C₂₇H₁₉N₃O₂ requires 417,1477) (100), δ_H (d₆-acetone) 4.90 (2H, s, CH₂Ph), 6.61 (2H, d, J_{45} 8.38, H4), 6.72 (2H, t, J 7.85, H5), 6.79 (2H, d, J_{32} 3.5, H3), 6.93 (2H, t, J 7.5, H6), 7.31–7.41 (3H, m, *Ph*), 7.47–7.52 (4H, m, indole H7 and *Ph*), 7.71 (2H, d, J_{23} 3.51, H2); δ_C (d₆-acetone) 42.5, 107.9, 111.9, 121.6, 122.5 (4C), 123.5, 123.8, 128.5, 129.0, 129.4, 129.8, 136.4, 137.5, 167.3; m/z (EI MS) M⁺ 417 (100), (M⁺ – CH₂Ph) 326 (20%).

3,4-Bis(1*H*-indol-1-yl)-1*H*-pyrrole-2,5-dione (13b)

Obtained by the dehydrogenation of **12b** in the conditions described for **11a** in 90% yield as an orange solid, mp 147–148 °C (n-heptane–EtOAc), $R_{\rm f}$ 0.12 (n-heptane–EtOAc 6:1), (Found C. 73.42; H. 3.96; N. 12.81. C₂₀H₁₃N₃O₂ requires C. 73.38; H. 4.00; N. 12.84%); $\delta_{\rm H}$ (d₆-DMSO) 6.59 (2H, d, *J* 7.69, H4), 6.71 (2H, t, *J* 7.75, H5), 6.77 (2H, d, *J* 3.46, H3), 6.91 (2H, t, *J* 7.44, H6), 7.46 (2H, d, *J* 7.73, H7), 7.65 (2H, d, *J* 3.46, H2), 11.61 (1H, s, NH); $\delta_{\rm C}$ (d₆-DMSO) 106.6, 110.8, 120.7, 121.5, 122.5, 123.4, 128.3, 135.1, 167.6; *m/z* (EI MS) M⁺ 327 (100%).

1-Benzyl-3-(1*H*-indol-1-yl)-4-(9*H*-carbazol-9-yl)-1*H*-pyrrole-2,5-dione (13c)

Obtained by dehydrogenation of **12f** in the conditions described for **11a** in 91% yield as an orange solid, mp 205–206 °C (nheptane–EtOAc), R_f 0.3 (n-heptane–EtOAc 6:1); (Found C. 79.64; H. 4.53; N. 9.05. $C_{31}H_{21}N_3O_2$ requires 79.64; H. 4.53; N. 8.99%); δ_H (d₆-DMSO) 4.90 (2H, s, CH_2 Ph), 6.49 (2H, d, *J* 3.66), 6.78 (1H, d, *J* 3.49, indole H3), 6.85 (1H, m), 7.22 (2H, t, *J* 7.33), 7.28 (2H, t, *J* 8.24), 7.34 (1H, t, *J* 7.32), 7.38–7.45 (5H, m), 7.54 (2H, d, *J* 7.18), 7.48 (1H, d, *J* 3.49, indole H2), 8.09 (2H, d, *J* 8.09); δ_C (d₆-DMSO) 41.6, 107.2, 111.2, 111.5, 120.0 (q), 120.2, 120.8, 121.5, 121.7, 122.4, 123.7, 126.2 (q), 127.5, 127.7, 128.0, 128.6, 128.7 (q), 128.8 (q), 134.6 (q), 136.4 (q), 138.5, 166.1 (q), 166.4 (q); m/z (EI MS) M⁺ 467 (100%).

2-Benzyl-9b,10-dihydro-1*H*-indolo[1',7':4,5,6]pyrrolo[3',4':2,3]-[1,4]diazepino[1,7-*a*]indole-1,3(2*H*)-dione (14a)

To the stirred solution of 13a (100 mg, 0.24 mmol) in CH₂Cl₂ (20 mL) was added TFA (2 mL) and the reaction mixture was left to stir at rt for 2 h, then it was poured into the mixture of EtOAc (50 mL) and saturated NaHCO₃ solution (50 mL). The organic layer was separated and washed with saturated NaHCO₃ solution (2×50 mL), water (30 mL) and brine, dried and evaporated. The product was isolated by flash chromatography (n-heptane \rightarrow *n*-heptane-acetone, 10:1) as a violet solid (56 mg, 56%), R_f 0.53 (PhCH₃), m/z (EI HRMS) M⁺ 417.1469 $(C_{27}H_{19}N_3O_2 \text{ requires } 417.1477) (100), M^+ - PhCH_2N(CO)_2$ 256 (10%); $\delta_{\rm H}$ (d₆-DMSO) signals assigned to indoline ring: 3.74–3.89 (2H, m, C10-H), 5.35 (1H, dd, J_{9b-10} 4.48, J_{9b-10} 9.66, C9b-H), 6.83 (1H, t, J 7.33, C12-H or C13-H), 6.87 (1H, d, J 7.86, C11-H), 7.04 (1H, t, J 7.69, C12-H or C13-H), 7.21 (1H, d, J 7.65, C14-H); signals assigned to indole ring: 6.85 (1H, d, J 3.62, C6-H), 7.18 (1H, t, J 7.70, C8-H), 7.26-7.40 (6H, m, 5H benzyl hydrogens and C7-H), 7.66 (1H, d, J 7.73, C9-H), 8.45 (1H, d, J 3.62, C5-H); 4.73 (2H, s, CH_2Ph); δ_C (d₆-DMSO) 31.3, 40.8, 63.2, 106.2, 111.8, 119.8, 120.1 (q), 120.7, 121.1, 123.4 (q), 124.6, 125.6, 126.9, 127.4 (2C, quaternary and tertiary), 128.1 (q), 128.2, 128.6, 130.0 (q), 134.0 (q), 136.8 (q), 143.5 (q), 164.4 (q), 165.6 (q).

9b,10-Dihydro-1*H*-indolo[1',7':4,5,6]pyrrolo[3',4':2,3][1,4]diazepino[1,7-*a*]indole-1,3(2*H*)-dione (14b)

Obtained from **13b** similarly to **14a** as a red solid, $R_{\rm f}$ 0.19 (n-heptane–EtOAc 3:1), m/z (EI HRMS) M⁺ 327.1021 (C₂₀-H₁₃N₃O₂ requires 327.1008); $\delta_{\rm H}$ (d₆-DMSO) signals assigned to indoline nucleus: 3.75 (1H, dd, J_{10-9b} 9.61, $J_{\rm gem}$ 16.7, C10-H), 3.85 (1H, dd, J_{10-9b} 4.33, $J_{\rm gem}$ 16.8, C10-H), 5.30 (1H, dd, J_{9b-10} 9.59, J_{9b-10} 4.33, C9b-H), 6.81 (1H, t, J 7.24), 6.86 (1H, d, J 8.05), 7.03 (1H, t, J 7.73), 7.26 (1H, d, J 7.25); signals assigned to indole nucleus: 6.83 (1H, d, J 3.5, C6-H), 7.19 (1H, t, J 7.65, C8-H), 7.32 (1H, d, J 7.65, C7-H), 7.65 (1H, d, J 7.65, C9-H), 8.43 (1H, d, J 3.5, C5-H), 10.96 (1H, s, NH); $\delta_{\rm C}$ (d₆-DMSO) 31.3, 63.1, 106.0, 111.6, 119.7, 120.5, 120.6, 121.1, 121.3, 123.9, 124.6, 125.6, 126.9, 127.4, 128.0, 130.0, 134.0, 143.6, 165.5, 166.8.

2-Benzyl-11b,12-dihydro-1*H*-indolo[1',2':4,5]pyrrolo[3',4':2,3]-[1,4]diazepino[6,7,1-*jk*]carbazole-1,3(2*H*)-dione (14c)

To a refluxing solution of 13c (200 mg, 0.43 mmol) in toluene (30 mL) was added CH₃SO₃H (0.2 mL) the reaction mixture was refluxed for 1 h diluted with EtOAc to 100 mL and washed with aq. NaHCO₃ (2 × 50 mL), water (50 mL), brine, dried and evaporated. The residue was subjected to flash chromatography (n-heptane \rightarrow n-heptane-acetone 10:1) to give 14c in 30% yield as a red solid, mp 149–150 °C (n-heptane-acetone); R_f 0.26 (n-heptane-EtOAc, 6:1); (Found: C, 79.71; H, 4.55; N, 9.04. $C_{31}H_{21}N_{3}O_{2}$ requires C, 79.64; H, 4.53; N, 8.99%) δ_{H} (d₆-DMSO) signals assigned to indoline nucleus: 3.43 (1H, dd, J_{12-11b} 9.29, J_{gem} 16.52, C12-H), 4.15 (1H, dd, J_{12-11b} 9.78, J_{gem} 16.51, C12-H), 5.65 (1H, t, J_{11b-12} 9.23, C11b-H), 6.82 (1H, t, J 7.32, C15-H), 7.00 (1H, d, J 7.87, C13-H), 7.07 (1H, t, J 6.64, C14-H), 7.20 (1H, d, J 7.28, C16-H); carbazole and phenyl moieties: 7.29 (1H, t, J 7.28), 7.34-7.49 (9H, m), 7.88 (1H, d, J 8.42), 8.20 (2H, d, J 7.5); $\delta_{\rm C}$ (d₆-DMSO) 36.3 (C12), 40.7 (CH₂Ph), 64.1 (C11b), 112.6, 115.2, 119.5, 119.8, 120.7, 121.7, 122.3, 123.4 (q), 124.3, 124.4 (q), 124.7, 124.9 (q), 125.8, 126.7, 127.3, 127.37 (2C), 127.44 (q), 127.5, 128.3 (q), 128.5 (2C), 128.8 (q), 135.0 (q), 136.8 (q), 137.3 (q), 144.0 (q), 164.0 (q), 164.2 (q); m/z (EI MS) M⁺ 467 (100%).

2-Benzyl-1*H*-indolo[1',7':4,5,6]pyrrolo[3',4':2,3][1,4]diazepino-[1,7-*a*]indole-1,3(2*H*)-dione (15a) A

To the solution of 14a (100 mg, 0.24 mmol) in toluene (10 mL) was added DDQ (65 mg, 0.28 mmol). The reaction mixture was refluxed for 1 h, diluted with EtOAc to 70 mL and washed with NaHSO₃ solution (2×20 mL), NaHCO₃ solution (3×20 mL), water and brine. The product was purified by flash chromatography (n-heptane \rightarrow n-heptane-acetone 10:1) to give 15a as a red crystalline solid (80mg, 80%), mp 193-194 °C (n-heptaneacetone); R_f 0.37 (n-heptane-EtOAc 6:1); (Found: C, 77.79; H, 4.11; N, 9.98. C₂₇H₁₇N₃O₂ requires C, 78.06; H, 4.12; N, 10.11%); δ_H (d₆-DMSO) 70 °C 4.75 (2H, s, CH,Ph), 6.79 (1H, d, J 3.66, C6-H), 7.10 (1H, t, J 7.10, C12-H or C13-H), 7.15 (1H, t, J 7.14, C12-H or C13-H), 7.21 (1H, s, C10-H), 7.22 (1H, t, J 7.73, C8-H), 7.34-7.42 (5H, m, Ph), 7.48-7.52 (3H, m, C11-H, C14-H and C7-H), 7.77 (1H, d, J 7.68, C9-H), 8.21 (1H, d, J 3.66, C5-H); δ_C (d₆-DMSO) 41.0, 107.6, 107.7, 114.6, 116.8 (q), 116.9 (q), 120.0, 120.6, 120.8, 121.9, 122.9, 123.0, 125.0 (q), 127.0, 127.1, 128.1, 129.8 (q), 130.1 (q), 135.0 (q), 135.9 (q), 136.0 (q), 137.2, 163.7 (q), 163.9 (q); m/z (EI MS) M^+ 415 (100), M^+ – CH₂Ph 324 (22), M^+ – PhCH₂N(CO), 254 (10%). B. A sample of 19 (50 mg, 0.12 mmol) was dehydrogenated with 2.2 eq. of DDQ in boiling toluene to give 15a (40 mg, 80%) identical with the sample of 15a obtained by the method A. A sample of 20 (50 mg, 0.12 mmol) was dehydrogenated with 1.1 eq. of DDQ in boiling toluene to give 15a (45 mg, 90%) identical with the sample of 15a obtained by the method A.

1*H*-Indolo[1',7':4,5,6]pyrrolo[3',4':2,3][1,4]diazepino[1,7-*a*]indole-1,3(2*H*)-dione (15b)

Obtained from **14b** similarly to **15a** as a red solid in 75% yield, mp 135 °C (decomp.) (EtOAc); $R_{\rm f}$ 0.3 (n-heptane–EtOAc, 3:1); m/z (EI HRMS) M⁺ 325.0859 (C₂₀H₁₁N₃O₂ requires 325.0851); M⁺ – HN(CO)₂ 254; $\delta_{\rm H}$ (d₆-DMSO) 6.79 (1H, d, J 3.58, C6-H), 7.09 (1H, t, J 7.14, C12-H or C13-H), 7.14 (1H, t, J 7.14, C12-H or C13-H), 7.18 (1H, s, C10-H), 7.19 (1H, t, J 7.75, C8-H), 7.47–7.50 (3H, m, C11-H, C14-H and C7-H), 7.74 (1H, d, J 7.75, C9-H), 8.16 (1H, d, J 3.58, C5-H), 11.31 (1H, s, NH); $\delta_{\rm C}$ (d₆-DMSO) 107.7, 110.0, 115.2, 117.0, 117.6, 120.3, 120.9, 121.1, 122.2, 123.2, 123.3, 125.4, 126.5, 129.9, 130.3, 135.2, 136.1, 137.3, 165.1, 165.5.

2-Benzyl-1*H*-indolo[1',2':4,5]pyrrolo[3',4':2,3][1,4]diazepino-[6,7,1-*jk*]carbazole-1,3(2*H*)-dione (15c)

Obtained by the dehydrogenation of **14c** similarly to **15a** in 90% yield as a red solid, mp 138–140 °C (n-heptane–EtOAc); $R_{\rm r}$ 0.41 (n-heptane–EtOAc 6:1), m/z (EI HRMS) M⁺ 465.1462 (C₃₁H₁₉N₃O₂ requires 465.1477), M⁺ – CH₂Ph 374, M⁺ – CH₂PhN(CO)₂ 256; $\delta_{\rm H}$ (d₆-DMSO) 4.69 (2H, s, CH₂Ph), 7.14 (1H, t, *J* 7.18, carbazole H3 or H6), 7.18 (1H, s, C12-H), 7.21 (1H, t, *J* 7.46, C7-H or C10-H), 7.28 (1H, t, *J* 7.33, C15-H), 7.32–7.37 (3H, m), 7.38–7.42 (3H, m), 7.45 (1H, t, *J* 7.14, C14-H), 7.55 (2H, d, *J* 8.23, C8-H and C9-H), 7.92 (1H, d, *J* 8.20, C13-H), 7.96 (1H, d, *J* 7.83, C11-H), 8.04 (1H, d, 7.65, C5-H), 8.11 (1H, d, *J* 7.77, C16-H); $\delta_{\rm C}$ (d₆-DMSO) 41.1, 109.3, 114.7, 117.4, 117.6 (q), 119.85, 119.87, 120.5, 121.6 (q), 122.2, 123.2, (23.3, 123.8, 124.4, 124.9 (q), 125.8, 126.2, 127.3, 127.5, 128.3 (q), 128.4, 129.6 (q), 136.1 (q), 136.5 (q), 137.2 (q), 137.8 (q), 141.5 (q), 163.0 (q), 164.0 (q).

2-Benzyl-5,6,9b,10-tetrahydro-1*H*-indolo[1',7':4,5,6]pyrrolo-[3',4':2,3][1,4]diazepino[1,7-*a*]indole-1,3(2*H*)-dione (19)

The solution of **12a** (200 mg, 0.48 mmol) in CH_2Cl_2 (10 mL) was treated with 1 ml of TFA, the resulting dark violet mixture was allowed to stir at rt for 2 h. The reaction mixture was diluted with EtOAc (100 mL) and washed with sat. aq. NaHCO₃ (2 × 30 mL), water (50 mL) and brine (50 mL), dried

and evaporated. The residue was refluxed in n-heptane for 30 min the mixture was then hot filtered and filtrate cooled to -15 °C, the precipitate was filtered off, washed with n-heptane and dried in vacuo to give 19 as a dark violet solid (110 mg, 55%), m/z (EI HRMS) M⁺ 419.1642 (C₂₇H₂₁N₃O₂ requires 419.1633), $M^+ - H_2$ 417, $M^+ - H_2 - CH_2Ph$ 326; $R_f 0.40$ (nheptane–EtOAc 5:1); mp 75–77 °C (n-heptane), $\delta_{\rm H}$ (d₆-DMSO) 3.01-3.19 (2H, m, C6-H), 3.48 (1H, dd, J 9.53, J_{ab} 16.35, C10-H_a), 3.68 (1H, dd, J 3.17, J_{ba} 16.36, C10-H_b), 4.30 (1H, m, C5-H_a), 4.53–4.60 (1H, m, C5-H_b), 4.62 (2H, s, -CH₂Ph), 4.94 (1H, dd, J 9.52, J 3.17, C9b-H), 6.51 (1H, d, J 7.81), 6.65 (1H, t, J 7.33, C12-H or C13-H), 6.85 (1H, t, J 7.57, C8-H), 6.96 (1H, t, J 7.35, C12-H or C13-H), 7.16 (1H, d, J 7.13), 7.17 (1H, d, J 7.19), 7.24 (1H, d, J 7.88), 7.26-7.38 (5H, m, -CH₂-C₆H₆); δ_C (d₆-DMSO) 27.4, 31.0, 40.2, 50.2, 62.9, 109.0, 112.8 (q), 118.3, 121.0, 124.0, 124.2, 124.6, 126.6, 126.87 (q), 126.9, 126.95, 127.0, 128.0 (q), 128.1, 128.6 (q), 132.8 (q), 136.9 (q), 143.1 (q), 145.0 (q), 164.4 (q), 165.4 (q).

2-Benzyl-5,6-dihydro-1*H*-indolo[1',7':4,5,6]pyrrolo[3',4':2,3]-[1,4]diazepino[1,7-*a*]indole-1,3(2*H*)-dione (20)

Obtained in the attempt to isolate 19 from the reaction mixture by column chromatography (eluent CHCl₃). Full conversion of 19 into 20 was observed and the product 20 was obtained by the evaporation of the corresponding fractions in 45% yield from **12a** as a violet solid, mp 160–163 °C (n-heptane–CHCl₃); $R_{\rm f}$ 0.48 (n-heptane-EtOAc 5:1); EI HRMS M⁺ 417.1467 (C₂₇H₁₉N₃O₂ requires 417.1477), M⁺ - CH₂Ph 326, M⁺ CH₂PhN(CO)₂ 256; δ_H (d₆-DMSO) 3.06 (2H, t, J 8.54, C6-H), 4.35 (2H, t, J 8.54, C5-H), 4.67 (2H, s, CH₂Ph), indole nucleus: 6.89 (1H, s, H3, C10-H), 6.92 (1H, t, J7.54, C8-H), 7.01 (1H, t, J 7.28, C13-H), 7.07 (1H, t, J 8.34, C12-H), 7.09 (1H, d, J 7.65, C7-H), 7.21 (1H, d, J 8.28, C11-H), 7.33-7.39 (5H, m, phenyl hydrogens), 7.44 (1H, d, J 7.61, C14-H), 7.58 (1H, d, J 8.2, C9-H); δ_{c} (d₆-DMSO) 27.5, 40.6, 48.8, 108.9, 110.4 (q), 114.0, 116.8 (q), 120.2, 121.2, 123.0, 123.8, 125.0, 126.3, 127.2, 127.3, 128.5, 129.6 (q), 132.9 (q), 135.0 (q), 135.7 (q), 136.6 (q), 136.9 (q), 144.3 (q), 163.9 (q), 164.5 (q).

1,2-Dihydro-6-methyl-7-phenyl-9-benzyl-6*H*-pyrrolo[3',4':2,3]-[1,4]diazepino[6,7,1-*hi*]indole-8,10(7*H*,9*H*)-dione (21a)

To a solution of 1-benzyl-3-(ethylanilino)-4-(indol-1-yl)maleimide 12c (200 mg, 0.47 mmol) in CH₂Cl₂ (20 mL) TFA (2 mL) was added, the reaction mixture was stirred at the ambient temperature for 2 h, then it was diluted with EtOAc (100 mL) and washed with sat. aq. NaHCO₃ (2×30 mL), water (50 mL) and brine (50 mL). The dry residue was purified by flash chromatography (n-heptane \rightarrow n-heptane-acetone, 10:1) to give **21a** as dark red crystals (110 mg, 55%), mp 138-140 °C (cyclohexane); R_f 0.24 (n-heptane-EtOAc 6:1); (Found C, 76.94; H, 5.51; N, 9.91. C₂₇H₂₃N₃O₂ requires C, 76.94; H, 5.5; N, 9.97%); δ_H (d₆-DMSO) 1.42 (3H, d, J 6.77, -CH₃), 3.05–3.19 (2H, m, C2-H), 4.35 (1H, m, C1-H_a), 4.55 (1H, m, C1-H_b), 4.67 (2H, s, CH₂Ph), 5.31 (1H, m, C6-H), 6.73 (1H, t, J 7.32), 6.81 (1H, t, J 7.37), 6.92 (2H, d, J 8.37), 7.12 (2H, t, J 6.91), 7.14-7.18 (2H, m), 7.27-7.32 (3H, m, -CH₂Ph), 7.35-7.41 (2H, m, -CH₂Ph); $\delta_{\rm C}$ (d₆-DMSO) 20.3, 25.7, 38.4, 48.3, 55.1, 108.9 (q), 114.2, 117.3, 120.1, 122.2, 125.0, 125.2, 125.5, 126.5, 126.9, 129.8 (q), 131.3 (q), 134.0 (q), 135.2 (q), 139.8 (q), 145.8 (q), 163.2 (q), 164.7 (q); $\delta_{\rm H}$ (CDCl₃) 1.46 (3H, d, J 6.96, -CH₃), 2.96–3.14 (2H, m, C2-H), 4.35 (1H, m, C1-H_a), 4.43 (1H, m, C1-H_b), 4.62 (2H, d, J 5.67, -CH₂Ph), 4.97 (1H, m, C6-H), 6.69 (1H, t, J 7.5, C4-H), 6.74 (1H, t, J 7.32, N-Phenyl, C4-H), 6.82 (2H, d, J 7.83, phenyl C2-H and C6-H), 6.86 (1H, d, J 7.37, C3-H), 6.96 (1H, d, J 7.36, C5-H), 7.10 (2H, two triplets, N-Phenyl C3-H and C5-H), 7.18-7.22 (1H, m, -CH₂Ph,C4-H), 7.24-7.28 (2H, m, -CH₂*Ph*), 7.29–7.33 (2H, m, -CH₂*Ph*); δ_c (CDCl₃) 22.9, 28.2, 41.2, 50.5, 59.4, 112.8 (q), 117.2, 120.5, 122.0, 124.2, 127.5, 128.2, 128.4, 128.5, 128.8, 131.8 (q), 132.9 (q), 134.1 (q), 136.8 (q), 142.3 (q), 147.7 (q), 165.9 (q), 167.0 (q); *m*/*z* (EI MS) M⁺ 421 (100%).

7-Ethyl-1,2-dihydro-6,9-dimethyl-6*H*-pyrrolo[3',4':2,3][1,4]diazepino[6,7,1-*hi*]indole-8,10(7*H*,9*H*)-dione (21b)

Obtained from 1-methyl-3-(diethylamino)-4-(indol-1-yl)maleimide **12d** similarly to **21a** in 86% yield as violet crystals, mp 80–82 °C (cyclohexane); $R_{\rm f}$ 0.41 (n-heptane–EtOAc 3:1); (Found C, 68.71; H, 6.45; N, 14.16. C₁₇H₁₉N₃O₂ requires C, 68.67; H, 6.44; N, 14.13%); $\delta_{\rm H}$ (d₆-DMSO) 1.02 (3H, t, *J* 7.03, N-CH₂CH₃), 1.23 (3H, d, *J* 6.96, C6-CH₃), 2.95 (2H, m, N-CH₂CH₃), 3.13 (2H, m, C2-H), 4.05 (1H, m, C1-H_a), 4.36 (2H, m, C1-H_b), 6.74 (1H, t, *J* 7.42, C4-H), 7.02 (1H, d, *J* 7.51, C3-H or C5-H), 7.09 (1H, d, *J* 7.38, C3-H or C5-H); $\delta_{\rm C}$ (d₆-DMSO) 14.0, 22.8, 23.2, 27.6, 49.6, 50.3, 59.1, 118.2 (q), 120.8, 123.9, 127.1, 129.2 (q), 132.2 (q), 132.3 (q), 143.4 (q), 166.5 (q), 167.9 (q); *m/z* (EI MS) M⁺ 297 (100%).

1,2-Dihydro-9-methyl-6-phenyl-6*H*-pyrrolo[3',4':2,3][1,4]diazepino[6,7,1-*hi*]indole-8,10(7*H*,9*H*)-dione (21c)

Obtained from 1-methyl-3-(benzylamino)-4-(indol-1-yl)maleimide **12e** similarly to **21a** in 65% yield as dark violet crystals mp 168–170 °C (n-heptane–acetone); $R_{\rm f}$ 0.27 (n-heptane– EtOAc, 6:1); (Found C, 72.46; H, 5.17; N, 12.68. C₂₀H₁₇N₃O₂ requires C, 72.49; H, 5.17; N, 12.68%); $\delta_{\rm H}$ (CDCl₃) 2.95 (3H, s, N-CH₃), 3.21 (2H, t, *J* 8.49, C2-H), 4.41 (1H, m, C1-H_a), 4.55 (1H, m, C1-H_b), 4.77 (1H, br s, NH), 5.35 (1H, s, C6-H), 6.70 (1H, t, *J* 7.57, C4-H), 6.77 (1H, d, *J* 7.76, C3-H), 7.09 (1H, d, *J* 7.29, C5-H), 7.13–7.16 (2H, m), 7.25–7.34 (3H, m); $\delta_{\rm c}$ (CDCl₃) 23.5, 28.3, 50.1, 64.2, 116.8 (q), 119.9, 120.5 (q), 124.2, 125.0 (q), 127.2, 127.6, 129.0, 129.2, 132.1 (q), 142.9 (q), 144.1 (q), 167.96 (q), 167.99 (q); *m/z* (EI MS) M⁺ 331 (100%).

6-Methyl-7-phenyl-9-benzyl-6*H*-pyrrolo[3',4':2,3][1,4]diazepino[6,7,1-*hi*]indole-8,10(7*H*,9*H*)-dione (22a)

Obtained by dehydrogenation of **21a** with 1.2 eq. of DDQ similarly to **15a** as red crystals in 80% yield, mp 153–154 °C (n-heptane–acetone); $R_f 0.4$ (n-heptane–EtOAc, 6:1); (Found C, 77.24; H, 5.05; N, 9.97. $C_{27}H_{21}N_3O_2$ requires C, 77.31; H, 5.05; N, 10.02%); δ_H (d₆-DMSO) 1.56 (3H, d, J 6.97, CH-*CH*₃), 4.68 (2H, s, -*CH*₂Ph), 5.52 (1H, q, J 6.96, C6-H), 6.83 (1H, d, J 3.48, C2-H), 6.95 (1H, t, J 7.32, ~N-Ph H4), 7.07 (1H, t, J 7.33, C4-H), 7.13–7.16 (3H, m), 7.24 (2H, t, J 7.36, ~N-Ph H3 and H5), 7.29–7.38 (5H, m, CH₂-C₆H₆), 7.57 (1H, d, J 7.73, C5-H), 8.46 (1H, d, J 3.49, C1-H); δ_C (d₆-DMSO) 23.5, 40.8, 60.3, 106.4, 119.8, 120.5, 121.5, 121.8, 122.3, 122.9 (q), 123.8 (q), 125.2, 127.1, 127.3, 128.6, 129.0, 130.1 (q), 130.5 (q), 133.6 (q), 136.7 (q), 146.2 (q), 165.5 (q), 165.8 (q); *m/z* (EI MS) M⁺ 419 (100%).

7-Ethyl-6,9-dimethyl-6*H*-pyrrolo[3',4':2,3][1,4]diazepino[6,7,1*hi*]indole-8,10(7*H*,9*H*)-dione (22b)

Obtained similarly to 15a by dehydrogenation of 21b as red

crystals in 90% yield, mp 99–100 °C (n-hexane); $R_{\rm f}$ 0.38 (n-heptane–EtOAc 6:1); (Found C, 69.18; H, 5.84; N, 14.21. C₁₇H₁₇N₃O₂ requires C, 69.14; H, 5.8; N, 14.23%); $\delta_{\rm H}$ (d₆-DMSO) 1.17 (3H, t, *J* 7.03, N-CH₂CH₃), 1.33 (3H, d, *J* 6.83, N-CHCH₃), 2.98 (3H, s, N-CH₃), 3.54 (1H, m, *J* 7.05, N-CH₂CH₃), 3.87 (1H, m, *J* 7.05, N-CH₂CH₃), 4.62 (1H, d, *J* 6.83, C6-H), 6.69 (1H, d, *J* 3.45, C2-H), 7.01 (1H, t, *J* 7.43, C4-H), 7.08 (1H, d, *J* 6.84, C3-H), 7.51 (1H, d, *J* 7.76, C5-H), 8.48, 1H, d, *J* 3.43, C1-H); $\delta_{\rm C}$ (d₆-DMSO) 14.3, 23.26, 23.31, 47.1, 60.2, 104.5, 111.3 (q), 119.9, 120.2, 120.3, 124.9, 128.5 (q), 129.2 (q), 130.0 (q), 133.4 (q), 166.2 (q), 164.4 (q); *m/z* (EI MS) M⁺ 295 (100%).

1,2-Dihydro-9-methyl-6-phenyl-8*H*-pyrrolo[3',4':2,3][1,4]diazepino[6,7,1-*hi*]indole-8,10(9*H*)-dione (23)

Compound **21c** was subjected to dehydrogenation with 1.1 eq. of DDQ in the conditions described for the synthesis of 15a. The reaction mixture obtained exhibited the presence of two products with $R_f 0.21$ and 0.41 (n-heptane-EtOAc, 3:1). We suggested by analogy with the compounds 22a,b that the product with $R_{\rm f}$ 0.41 has the structure of 22c. During the attempt to separate them by column chromatography only the product with the R_f of 0.21 was isolated in 25% yield (from 12e) as dark blue crystals, mp 235-237 °C (toluene-acetone); (Found C, 72.82; H, 4.53; N, 12.61. C₂₀H₁₅N₃O₂ requires C, 72.94; H, 4.59; N, 12.76%); $\delta_{\rm H}$ (d₆-DMSO) 2.80 (3H, s, N-CH₃), 2.81 (2H, t, J 8.38, C2-H), 3.97 (2H, t, J 8.18, C1-H), 6.15 (1H, dd, J 7.69, J_{meta} 0.98, C3-H), 6.64 (1H, t, J 7.57, C4-H), 7.04 (1H, dd, J 7.48, J_{meta} 0.97, C5-H), 7.32-7.44 (5H, m, phenyl); $\delta_{\rm C}$ (d₆-DMSO) 22.8, 26.7, 46.8, 124.6, 125.4, 127.4, 128.0, 129.1, 130.0, 132.6, 133.4, 137.3, 139.6, 152.4, 163.8, 166.8, 176.6; m/z (EI MS) M⁺ 329 (100%).

Acknowledgements

This work was supported by the Russian Fund for Basic Research, grant number 01–03–33028.

References

- 1 P. G. Goekjian and M. R. Jirousek, Curr. Med. Chem., 1999, 6, 877–903.
- 2 U. Pindur, Y.-S. Kim and F. Meharbani, *Curr. Med. Chem.*, 1999, 6, 29–68.
- 3 J. D. Chisholm, J. Golik, B. Krishnan, J. A. Matson and D. L. Van Vranken, *J. Am. Chem. Soc.*, 1999, **121**, 3801.
- 4 J. Bergman and B. Pelchman, *Tetrahedron Lett.*, 1987, **28**, 4411–4444. 5 R. P. Joyce, J. A. Gainor and S. M. Wainreb, *J. Org. Chem.*, 1987,
- **5** K. P. Joyce, J. A. Gainor and S. M. Wainreb, *J. Org. Chem.*, 1987, **52**(2), 1177–1180.
- 6 S. Mahboobi, S. Eluwa, M. Koller and A. Popp, J. Heterocyclic Chem., 2000, 37, 1177–1185.
- 7 G. L. Ciamician and P. Silber, Chem. Ber., 1884, 17, 553-557.
- 8 H. D. Scharf, F. Korte, H. Seidler and R. Dittner, *Chem. Ber.*, 1965, **98**, 764–765.
- 9 M. Somei, K. Kobayashi, K. Tanii, T. Mochizuki, Y. Kawada and Y. Fukui, *Heterocycles*, 1995, **40**, 119–122.